▎ 摘 要
Photo-induced transition probabilities in graphene are studied theoretically from the viewpoint of Floquet theory. Conduction band populations are computed for a strongly, periodically driven graphene sheet under linear, circular, and elliptic polarization. Features of the momentum spectrum of excited quasi-particles can be directly related to the avoided crossing of the Floquet quasi-energy levels. In particular, the impact of the ellipticity and the strength of the laser excitation on the avoided crossing structure-and on the resulting transition probabilities-is studied. It is shown that the ellipticity provides an additional control parameter over the phenomenon of coherent destruction of tunneling in graphene, allowing one to selectively suppress multiphoton resonances.