• 文献标题:   Revealing the Modulation Effects on the Electronic Band Structures and Exciton Properties by Stacking Graphene/h-BN/MoS2 Schottky Heterostructures
  • 文献类型:   Article
  • 作  者:   ZHU XD, HE JB, LIU WM, ZHENG YX, SHENG CX, LUO Y, LI SJ, ZHANG RJ, CHU JH
  • 作者关键词:   graphene, hbn, mos2 heterostructure, tunneling effect, interlayer coupling, electronic band structure, exciton
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1021/acsami.2c20100 EA DEC 2022
  • 出版年:   2023

▎ 摘  要

Stacking two dimensional tunneling heterostructures has always been an important strategy to improve the optoelectronic device performance. However, there are still many disputes about the blocking ability of monolayer (1L-) h-BN on the interlayer coupling. Graphene/h-BN/MoS2 optoelectronic devices have been reported for superior device results. In this study, starting with graphene/h-BN/MoS2 heterostructures, we report experimental evidence of 1L-h-BN barrier layer modulation effects about the electronic band structures and exciton properties. We find that 1L-h-BN insertion only partially blocks the interlayer carrier transfer. In the meantime, the 1L-h-BN barrier layer weakens the interlayer coupling effect, by decreasing the efficient dielectric screening and releasing the quantum confinement. Consequently, the optical conductivity and plasmon excitation slightly improve, and the electronic band structures remain unchanged in graphene/h-BN/MoS2, explaining their fascinating optoelectronic responses. Moreover, the excitonic binding energies of graphene/h-BN/MoS2 redshift with respect to the graphene/MoS2 counterparts. Our results, as well as the broadband optical constants, will help better understand the h-BN barrier layers, facilitating the developing progress of h-BN-based tunneling optoelectronic devices.