▎ 摘 要
Thermally induced spin transport in magnetized zigzag graphene nanoribbons (M-ZGNRs) is explored using first-principles calculations. By applying temperature difference between the source and the drain of a M-ZGNR device, spin-up and spin-down currents flowing in opposite directions can be induced. This spin Seebeck effect in M-ZGNRs can be attributed to the asymmetric electron hole transmission spectra of spin-up and spin-down electrons. Furthermore, these spin currents can be modulated and completely polarized by tuning the back gate voltage. Finally, thermal magnetoresistance of ZGNRs between ground states and magnetized states can reach 10(4)% without an external bias. Our results indicate the possibility of developing graphene-based spin caloritronic devices.