• 文献标题:   Thermal boundary conductance of monolayer beyond-graphene two-dimensional materials on SiO2 and GaN
  • 文献类型:   Article
  • 作  者:   FOSS C, AKSAMIJA Z
  • 作者关键词:   thermal, phonon, boundary, conductance, phosphorene
  • 出版物名称:   NANOTECHNOLOGY
  • ISSN:   0957-4484 EI 1361-6528
  • 通讯作者地址:  
  • 被引频次:   5
  • DOI:   10.1088/1361-6528/ac0d7d
  • 出版年:   2021

▎ 摘  要

Two-dimensional (2D) materials have emerged as a platform for a broad array of future nanoelectronic devices. Here we use first-principles calculations and phonon interface transport modeling to calculate the temperature-dependent thermal boundary conductance (TBC) in single layers of beyond-graphene 2D materials silicene, hBN, boron arsenide (BAs), and blue and black phosphorene (BP) on amorphous SiO2 and crystalline GaN substrates. Our results show that for 2D/3D systems, the room temperature TBC can span a wide range from 7 to 70 MW m(-2) K-1 with the lowest being for BP and highest for hBN. We also show that 2D/3D TBC has a strong temperature dependence that can be alleviated by encapsulating the 2D/3D stack. Upon encapsulation with AlO x , the TBC of several beyond-graphene 2D materials can match or exceed reported values for graphene and numerous transition-metal dichalcogendies which are in the range of 15-40 MW m(-2) K-1. We also compute the room temperature TBC as a function of van der Waals spring coupling (K ( a )) where the TBC falls in the range of 50-150 MW m(-2) K-1 at coupling strengths of K ( a ) = 2-4 N m(-1) for silicene, BAs, and blue phosphorene. We further identify group III-V materials with ultra-soft flexural branches as being promising 2D materials for thermal isolation and energy scavenging applications when matched with crystalline substrates.