• 文献标题:   Li-Ion Permeability of Holey Graphene in Solid State Batteries: A Particle Dynamics Study
  • 文献类型:   Article
  • 作  者:   BARRIOS EA, RAINS AA, LIN Y, SU J, CONNELL JW, VIGGIANO RP, DORNBUSCH DA, WU JJ, YAMAKOV V
  • 作者关键词:   liion battery, holey graphene, membrane permeability, particle dynamic, simulation study
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:  
  • 被引频次:   2
  • DOI:   10.1021/acsami.2c03012
  • 出版年:   2022

▎ 摘  要

Lithium (Li)-ion permeability of holey graphene (hG) for use as an electrically conducting scaffold in solid-state battery electrodes is explored through the means of a particle dynamics simulation model. While carbon materials do not typically exhibit Li-ion conductivity, the unique structural motif of hG, which consists of two-dimensional nanosheets with arrays of through-thickness holes, may present an opportunity for Li-ion conductors (i.e., solid electrolyte (SE) particles) to make contacts through the holes. In our model, the SE is presented as a system of hard elastic spheres conductive to Li-ions. The SE spheres are in contact with each other through compression between two plane current collectors. One hG layer is inserted between the current collectors and parallel to them. Randomly distributed circular holes in the hG allow for contact between the SE particles on both sides of the hG layer. By solving the Li-ion conducting network formed between the electrodes through the contact points of all the particles, the overall conductivity of the system was calculated as a function of SE particle size and the size and number of the hG holes (i.e., hG porosity). A critical ratio of around 4 between the SE particle size and the pore size was found. Below this critical value, the hG layer becomes practically transparent for Li-ions. This study helps to guide the design of highly efficient solid-state electrode composition and architectures using hG as a unique electrically conducting scaffold.