▎ 摘 要
Moire superlattices of 2D materials with a small twist angle are thought to exhibit appreciable flexoelectric effect, though unambiguous confirmation of their flexoelectricity is challenging due to artifacts associated with commonly used piezoresponse force microscopy (PFM). For example, unexpectedly small phase contrast (approximate to 8 degrees) between opposite flexoelectric polarizations is reported in twisted bilayer graphene (tBG), though theoretically predicted value is 180 degrees. Here a methodology is developed to extract intrinsic moire flexoelectricity using twisted double bilayer graphene (tDBG) as a model system, probed by lateral PFM. For small twist angle samples, it is found that a vectorial decomposition is essential to recover the small intrinsic flexoelectric response at domain walls from a large background signal. The obtained threefold symmetry of commensurate domains with significant flexoelectric response at domain walls is fully consistent with the theoretical calculations. Incommensurate domains in tDBG with relatively large twist angles can also be observed by this technique. A general strategy is provided here for unraveling intrinsic flexoelectricity in van der Waals moire superlattices while providing insights into engineered symmetry breaking in centrosymmetric materials.