• 文献标题:   Uranium capture by a layered 2D/2D niobium phosphate/holey graphene architecture via an electro-adsorption and electrocatalytic reduction coupling process
  • 文献类型:   Article
  • 作  者:   LIAO Y, LEI RL, WENG XF, YAN C, FU JX, WEI GX, ZHANG C, WANG M, WANG HQ
  • 作者关键词:   electroadsorption, electrocatalytic reduction, u vi, niobium phosphate, grapheme
  • 出版物名称:   JOURNAL OF HAZARDOUS MATERIALS
  • ISSN:   0304-3894 EI 1873-3336
  • 通讯作者地址:  
  • 被引频次:   5
  • DOI:   10.1016/j.jhazmat.2022.130054 EA SEP 2022
  • 出版年:   2023

▎ 摘  要

As an energy-efficient and eco-friendly technique, capacitive deionization (CDI) has shown great potential for uranium (U(VI)) capture recently. However, extracting U(VI) with high kinetics, capacity and selectivity remains a major challenge due to the current surface active sites-based material and co-existing ions in aqueous solution. Here we rationally designed a layered 2D/2D niobium phosphate/holey graphene (HGNbP) electrode material, and originally demonstrated its efficient U(VI) capture ability via an electro-adsorption and electrocatalytic reduction coupling process. The less-accumulative loose layered architecture, open polycrystalline construction of niobium phosphate with active phosphate sites, and rich in-plane nano-pores on conductive graphene nanosheets endowed HGNbP with fast charge/ion transport, high electroconductivity and superior pseudoca-pacitance, which enabled U(VI) ions first to be electro-adsorbed, then physico-chemical adsorbed, and finally electrocatalysis reduced/deposited onto electrode surface without the limitation of active sites under a low potential of 1.2 V. Based on these virtues, the HGNbP exhibited a fast adsorption kinetics, with a high removal rate of 99.9% within 30 min in 50 mg L-1 U(VI) solution, and a high adsorption capacity up to 1340 mg g-1 in 1000 mg L-1 U(VI) solution. Furthermore, the good recyclability and selectivity towards U(VI) were also realized.