▎ 摘 要
As a member of the carbon material family, graphene has long been the focus of research on account of its abundant excellent properties. Nevertheless, many previous research works have attached much importance to its mechanical capacity and electrical properties, and not to its surface wetting properties with respect to water. In this review, a series of methods are put forward for characterization of the water contact angle of graphene, such as experimental measurements, classic molecular dynamics simulations, and formula calculations. A series of factors that affect the wettability of graphene, including defects, controllable atmosphere, doping, and electric field, are also discussed in detail, and have rarely have been covered in other review articles before. Finally, with the developments of smart surfaces, a reversible wettability variation of graphene from hydrophobic to hydrophilic is important in the presence of external stimulation and is discussed in detail herein. It is anticipated that graphene could serve as a tunable wettability coating for further developments in electronic devices and brings a new perspective to the construction of smart material surfaces.