▎ 摘 要
The band gap and redox potential of semiconductor nanocrystals are two quantities of primary importance for their applications in energy conversion devices. Herein, we report on covalent functionalization of colloidal graphene quantum dots through a solution-chemistry approach and studies of their band gaps and redox potentials. We show that their band gaps and redox potentials can be independently controlled, the former by size and the latter by functionalization. The size and the functionalization dependence of the properties can be numerically reproduced with tight-binding calculations, which thus provides a simple theoretical tool to guide the design of graphene QDs with desired properties.