▎ 摘 要
Cadmium (Cd), as a hazardous pollutant present in the environment as well as within biological samples, needs to be detected and remediated at the same time. Although many types of Cd detection techniques have been developed globally, there is no evidence to analyse Cd2+ ion electrochemically using graphene-based electrode for bioaccumulation of Cd in bacteria and plants. The present study describes the fabrication and characterization of a three-dimensional reduced graphene oxide-based electrode to detect bioaccumulation of Cd within the bacterial cell and rice tissues applying differential pulse voltammetry (DPV) technique. In addition, X-ray fluorescence (XRF) and X-ray diffraction (XRD) studies were performed as supporting tools for this study in the selected Cd resistant plant growth promoting rhizobacterial (PGPR) strain, Klebsiella michiganensis MCC3089. This strain was characterized based on its plant growth promoting (PGP) traits and exhibited bioaccumulation of Cd both under high and low Cd concentrations, of which the latter is more environmentally significant. The Cd-sequestration ability of this strain was found to reduce Cd uptake within rice seedlings.