• 文献标题:   Graphene nanosheet-titanium nitride nanocomposite for high performance electrochemical capacitors without extra conductive agent addition
  • 文献类型:   Article
  • 作  者:   HAN PX, YUE YH, WANG XG, MA W, DONG SM, ZHANG KJ, ZHANG CJ, CUI GL
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS CHEMISTRY
  • ISSN:   0959-9428 EI 1364-5501
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   28
  • DOI:   10.1039/c2jm35485c
  • 出版年:   2012

▎ 摘  要

A graphene nanosheet-titanium nitride (G-TiN) nanocomposite has been fabricated through a simple in situ hydrolysis method combined with ammonia annealing. TiN nanoparticles are homogeneously anchored on G, which is beneficial for the formation of a porous structure and the enhancement of electrical conductivity perpendicular to the graphene layers. Such a texture allows for the fast accessibility of ions and rapid transfer of electrons. In 1 M LiPF6-EC : DEC (vol. 1 : 1) electrolyte, the specific capacitances of the electrochemical capacitors (ECs) assembled without extra conductive agent addition, are 560 and 132 F g(-1) at current densities of 0.1 and 4 A g(-1), respectively. Meanwhile, high energy densities of 162 and 81 W h kg(-1) are obtained at power densities of 150 and 934 W kg(-1), respectively. Even at a higher power density of 4367 W kg(-1), a remarkable energy density of 41 W h kg(-1) is delivered. The unique characteristic of G-TiN endows the ECs with high energy density and power density, due to the combination of electric double layer capacitance and lithium ion intercalation capacitance.