• 文献标题:   An improved hybrid nanocomposites of rice husk derived graphene (GRHA)/Zeolitic imidazolate framework-8 for hydrogen adsorption
  • 文献类型:   Article
  • 作  者:   ARIFIN NFT, YUSOF N, NORDIN NAHM, JAAFAR J, ISMAIL AF, SALLEH WNW, AZIZ F
  • 作者关键词:  
  • 出版物名称:   INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
  • ISSN:   0360-3199 EI 1879-3487
  • 通讯作者地址:  
  • 被引频次:   7
  • DOI:   10.1016/j.ijhydene.2020.03.155 EA JUN 2021
  • 出版年:   2021

▎ 摘  要

In this work, hybrid nanocomposites rice husk derived graphene (GRHA) and zeolitic imidazolate framework-8 (ZIF-8) were prepared for hydrogen adsorption. The main contribution of this study is the simplification of the synthesized GRHA/ZIF-8 hybrid nanocomposites. Besides that, the use of synthesized graphene from rice husk (RH) could help in overcoming environmental issue since disposal of RH is rather challenging. GRHA was obtained through calcining rice husk ash (RHA) at 900 degrees C for 2 h in a muffle furnace at atmospheric condition while the nanocomposite of GRHA/ZIF-8 was produced in free solvent condition using deionized water at room temperature for only 1 h. The N-2 adsorption-desorption indicated a type I isotherm. Interestingly, it was found that the BET specific surface area (BETSSA) of GRHA/ZIF-8 showed enhancement up to 3 times higher as compared to pristine GRHA with the addition of 0.2 g of GRHA. From the experimental data, the adsorption of H-2 by nanocomposite GRHA/ZIF-8 obeyed the pseudo-second order kinetic model and intraparticle diffusion model with R-2 value up to 0.9890 and 0.8087 respectively at 12 bar. Moreover, the GRHA/ZIF-8 possessed highest hydrogen adsorption of 31.84 mmol/g at 12 bar. These impressive results are justified by the combination of ZIF-8's microporosity and GRHA's mesoporosity. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.