• 文献标题:   Graphene Aerogel-encapsulated Silicon Nanoparticles Mechanofused on Graphite without Prelithiation for Cylindrical Ni-rich NMC811 Li-ion Batteries
  • 文献类型:   Article
  • 作  者:   KONGSAWATVORAGUL K, BUNYANIDHI P, JANGSAN C, TEJANGKURA W, SAWANGPHRUK M
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF THE ELECTROCHEMICAL SOCIETY
  • ISSN:   0013-4651 EI 1945-7111
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1149/1945-7111/ac91ad
  • 出版年:   2022

▎ 摘  要

Silicon (Si), one of the promising anodes, provides a high theoretical specific capacity of ca. 3500 mAh g(-1) at room temperature. It experiences many drastic issues, such as cost-effectiveness, large volume expansion, and unstable thick solid-electrolyte interfaces (SEI), leading to poor cycling stability. A small amount of Si has recently been added to graphite and used as the anode for commercial Li-ion batteries. Nevertheless, the intrinsic issues of Si still occur. Herein, we encapsulated Si nanoparticles with reduced graphene oxide (RGO) aerogel and graphite to obtain Si-RGO@Graphite using a dry surface coating technique so-called mechanofusion. This technique enhances the strong binding between these materials. We also demonstrated the practical use of the as-prepared Si-RGO@Graphite (9.9:0.1:90.0 wt% of Si:RGO:Graphite) anode coupling with Ni-rich NMC811 cathode at a 18650 cylindrical cell level. In this attempt, we avoid using an expensive vacuum-required prelithiation process, which currently inhibits the practical and commercial use of the Si-based anode. We believe this new composite material may be useful for high-energy LIBs in the future.