• 文献标题:   Platinum-Supported Zirconia Nanotube Arrays Supported on Graphene Aerogels Modified with Metal-Organic Frameworks: Adsorption and Oxidation of Formaldehyde at Room Temperature
  • 文献类型:   Article
  • 作  者:   TAN HC, CHEN DY, LI NJ, XU QF, LI H, HE JH, LU JM
  • 作者关键词:   heterogeneous catalysi, metalorganic framework, oxidation, platinum, zirconium
  • 出版物名称:   CHEMISTRYA EUROPEAN JOURNAL
  • ISSN:   0947-6539 EI 1521-3765
  • 通讯作者地址:   Soochow Univ
  • 被引频次:   1
  • DOI:   10.1002/chem.201904426 EA NOV 2019
  • 出版年:   2019

▎ 摘  要

Precious-metal catalysts (e.g., Au, Rh, Ag, Ru, Pt, and Pd) supported on transition-metal oxides (e.g., Al2O3, Fe2O3, CeO2, ZrO2, Co3O4, MnO2, TiO2, and NiO) can effectively oxidize volatile organic compounds. In this study, porous platinum-supported zirconia materials have been prepared by a "surface-casting" method. The synthesized catalysts present an ordered nanotube structure and exhibited excellent performance toward the catalytic oxidation of formaldehyde. A facile method, utilizing a boiling water bath, was used to fabricate graphene aerogel (GA), and the macroscopic 3D Pt/ZrO2-GA was modified by introducing an adjustable MOF coating by a surface step-by-step method. The unblocked mesoporous structure of the graphene aerogel facilitates the ingress and egress of reactants and product molecules. The selected 7 wt.% Pt/ZrO2-GA-MOF-5 composite demonstrated excellent performance for HCHO adsorption. Additionally, this catalyst achieved around 90 % conversion when subjected to a reaction temperature of 70 degrees C (T-90 %=70 degrees C). The Pt/ZrO2-GA-MOF-5 composite induces a catalytic cycle, increasing the conversion by simultaneously adsorbing and oxidizing HCHO. This work provides a simple approach to increasing reactant concentration on the catalyst to increase the rate of reaction.