• 文献标题:   Chitosan/graphene oxide hybrid hydrogel electrode with porous network boosting ultrahigh energy density flexible supercapacitor
  • 文献类型:   Article
  • 作  者:   JIANG C, GAO MM, ZHANG SY, HUANG L, YU ST, SONG ZQ, WU Q
  • 作者关键词:   modified chitosan, flexible electrode, ultrahigh energy density
  • 出版物名称:   INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
  • ISSN:   0141-8130 EI 1879-0003
  • 通讯作者地址:  
  • 被引频次:   4
  • DOI:   10.1016/j.ijbiomac.2022.11.201 EA DEC 2022
  • 出版年:   2023

▎ 摘  要

To overcome the low energy density and poor conductivity of conventional electrode materials for building supercapacitor, herein, a hybrid hydrogel prepared from compositing bio-based chitosan with holey graphene oxide by microwave-assisted hydrothermal is proposed. This binary hydrogel is endowed with heteroatomic functional groups and conductive porous network by chemical pretreatments, where amides and carboxyl groups are introduced during the acylation modification of chitosan to enable it soluble in water for sufficient reaction, while the oxidation etching for graphene oxide in the defect area by H2O2 facilitates in-plane nanopores network to provide abundant active surface and short ion diffusion pathway. Benefited from the high conductivity and flexibility, this hydrogel present promising performance when used as additive-free electrode in a three-electrode, with a high specific capacitance of 377 F/g at 5 A/g. The rich nitrogen and oxygen groups on sur-face of the hydrogel contribute to high capacitance directly, while the in-plane nanopores and hierarchically porous network benefit to promote their wettability, accelerate the charge transfer and enhance their charge storage ability. When the hydrogel composite is adopted into a flexible solid-state supercapacitor employing lignin hydrogel electrolyte, it unfolds a specific capacitance of 210 F/g at 0.5 A/g, with an ultrahigh energy density of 31 Wh/kg at the power density of 150 W/kg. The solid-state supercapacitor exhibits promising po-tential in applications such as signal sensor and portable energy storage.