• 文献标题:   One dimensional MnV2O6 nanobelts on graphene as outstanding electrode material for high energy density symmetric supercapacitor
  • 文献类型:   Article
  • 作  者:   LOW WH, LIM SS, SIONG CW, CHIA CH, KHIEW PS
  • 作者关键词:   hybrid electrode, g8mvo, symmetric supercapacitor
  • 出版物名称:   CERAMICS INTERNATIONAL
  • ISSN:   0272-8842 EI 1873-3956
  • 通讯作者地址:  
  • 被引频次:   17
  • DOI:   10.1016/j.ceramint.2020.12.090 EA FEB 2021
  • 出版年:   2021

▎ 摘  要

Bimetallic oxide/graphene nanocomposite has been recognised as a promising electrode material owing to its admirable electrochemical activity and excellent electrical conductivity. Herein, a distinctive approach has been applied on exploiting the graphene/MnV2O6 nanomaterial as a promising electrode for supercapacitor. In order to achieve fascinating supercapacitive behaviours, an efficient liquid phase exfoliation coupled with solvothermal process is offered to construct these graphene/MnV2O6 nanocomposites for symmetric supercapacitor analysis. The hybrid G-8MVO electrode benefited from its optimal graphene/manganese vanadate ratio (1:8), interconnecting network architecture, rich redox activity and superior conducting feature exhibited the maximum specific capacitance of 348 Fg(-1) at 0.5 Ag-1. Moreover, 88% of its initial capacitance was retained and columbic efficiency of nearly 100% was achieved after 3000 cycles at 1 Ag-1. Moreover, the symmetric super capacitor provided a maximum specific energy of 48.33 Wh/kg at specific power of 880.6 W/kg. The comprehensive electrochemical output of the graphene/MnV2O6 nanocomposite advocates its potential as a high performance supercapacitor electrode.