▎ 摘 要
Using ab initio density functional theory, we present a novel way of simultaneously enhancing the induced magnetic moment and opening up the band gap of a graphene sheet supported on ferromagnetic transition metal surface. Specifically, we have demonstrated that by simply hydrogenating graphene supported on ferromagnetic Co surface at saturation coverage, (i) there is a six-fold increase in the magnitude of the induced magnetic moment compared with the pristine graphene on the Co surface and (ii) for both the spin-up and the spin-down channels there is a band gap opening at the K-point of the Brillouin zone.