▎ 摘 要
Chitosan crosslinked with metal-organic framework (MOF-199)@aminated graphene oxide aerogel (MOF199@AFGO/CS) were prepared to adsorb formaldehyde and methyl orange. The prepared MOF-199@AFGO/CS aerogel was well characterized via SEM, EDX, FT-IR, XRD and XPS to reveal the microstructure and composition. Besides, the mechanical property and the stability of MOF-199@AFGO/CS aerogel were investigated. The results showed that MOF-199@AFGO/CS aerogel had good stability in water, compression resilience and thermostability. The study on the ability to adsorb formaldehyde gas and methyl orange showed that the adsorption capacity of MOF-199@AFGO/CS aerogel was related to the pore size and the surface functional groups of MOF199@AFGO/CS aerogel. When the pore size is moderate, as the amino group and MOF-199 on the aerogel increased, the adsorption capacity of formaldehyde gas (197.89 mg/g) and methyl orange (412 mg/g) can reach the maximum. Furthermore, the adsorption process at equilibrium followed the Freundlich isotherm model. The kinetic behavior was well fitted by the pseudo-second-order model, indicating chemisorption as the ratedetermining step. This work can provide a reliable basis for the adsorbent to remove pollutants in different forms at the same time, and has potential application in simultaneously adsorbing liquid pollutants and gas pollutants.