▎ 摘 要
Graphene, a 2-dimensional carbon nanomaterial, has attracted wide attention in biomedical applications, owing to its intrinsic physical and chemical properties. In this work, a photosensitizer molecule, 2-(I-hexyloxyethyl)-2-devinyl pyropheophorbide-alpha (HPPH or Photochlor (R)), is loaded onto polyethylene glycol (PEG)-functionalized graphene oxide (GO) via supramolecular Pi-Pi stacking. The obtained GO-PEG-HPPH complex shows high HPPH loading efficiency. The in vivo distribution and delivery were tracked by fluorescence imaging as well as positron emission tomography (PET) after radiolabeling of HPPH with Cu-64. Compared with free HPPH, GO-PEG-HPPH offers dramatically improved photodynamic cancer cell killing efficacy due to the increased tumor delivery of HPPH. Our study identifies a role for graphene as a carrier of PDT agents to improve PDT efficacy and increase long-term survival following treatment.