• 文献标题:   Increased activity of nitrogen-doped graphene-like carbon sheets modified by iron doping for oxygen reduction
  • 文献类型:   Article
  • 作  者:   ZHOU TS, MA RG, ZHANG T, LI ZC, YANG MH, LIU Q, ZHU YF, WANG JC
  • 作者关键词:   electrocatalysi, oxygen reduction, carbon sheet, ndoping, fe modification
  • 出版物名称:   JOURNAL OF COLLOID INTERFACE SCIENCE
  • ISSN:   0021-9797 EI 1095-7103
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   20
  • DOI:   10.1016/j.jcis.2018.10.021
  • 出版年:   2019

▎ 摘  要

Rational design and synthesis of Fe-N-codoped carbon materials are promising for replacing commercial Pt/C for oxygen reduction reaction (ORR). Herein, we develop a simple two-step pyrolysis approach to synthesize highly active Fe-N-codoped graphene-like carbon sheets (FeNGC) with active Fe-N-based species for ORR. In this strategy, two-dimensional nitrogen-doped graphene-like carbon sheets (NGC) with a high N-doping level (8.1 at%) and abundant mesoporosity (3.8 nm) are firstly synthesized by co-pyrolysis of biomass carbon source and dicyandiamide, in which dicyandiamide simultaneously serves as a trifunctional role of in situ reaction template, nitrogen source and porogen. Secondly, FeNGCs are prepared by additional iron doping of NGC at high temperatures, in which sheet-like structure is in favor of increased accessibility of N-functional groups to more Fe atoms, thus giving rise to formation of high-density Fe-N-based active sites. The optimized catalyst synthesized at 950 degrees C (FeNGC-950) demonstrates significantly increased ORR activity with a dominant 4e(-) reduction process compared to pure NGC in alkaline and acidic solutions, which evidently shows the comparable activity to Pt/C due to the synergy of simultaneously optimized structures and multi-active sites. Moreover, FeNGC-950 has better long-term stability and methanol tolerance than Pt/C both in alkaline and acidic electrolytes. The present strategy paves a new venue to design and prepare various metal-doped carbon materials with great potentials in energy applications. (C) 2018 Elsevier Inc. All rights reserved.