▎ 摘 要
Wearable film-based smart biosensors have been developed for real-time biomolecules detection. Particularly, interfacial co-assembly of reduced graphene oxide-prussian blue (PB-RGO) film through electrostatic interaction has been systematically studied by controllable pH values, achieving optimal PB-RGO nanofilms at oil/water (O/W) phase interface driven by minimization of interfacial free energy for wearable biosensors. As a result, as-prepared wearable biosensors of PB-RGO film could be easily woven into fabrics, exhibiting excellent glucose sensing performance in amperometric detection with a sensitivity of 27.78 mu A mM(-1) cm(-2) and a detection limit of 7.94 mu M, as well as impressive mechanical robustness of continuously undergoing thousands of bending or twist. Moreover, integrated wearable smartsensing system could realize remotely real-time detection of biomarkers in actual samples of beverages or human sweat via cellphones. Prospectively, interfacial co-assembly engineering driven by pH-induced electrostatic interaction would provide a simple and efficient approach for acquiring functional graphene composites films, and further fabricate wearable smartsensing devices in health monitoring fields.