• 文献标题:   Waste derived approach towards wealthy fluorescent N-doped graphene quantum dots for cell imaging and H2O2 sensing applications
  • 文献类型:   Article
  • 作  者:   KHOSE RV, BANGDE P, BONDARDE MP, DHUMAL PS, BHAKARE MA, CHAKRABORTY G, RAY AK, DANDEKAR P, SOME S
  • 作者关键词:   ngqd, bioderived source, microwave synthesi, cell toxicity, bioimaging
  • 出版物名称:   SPECTROCHIMICA ACTA PART AMOLECULAR BIOMOLECULAR SPECTROSCOPY
  • ISSN:   1386-1425 EI 1873-3557
  • 通讯作者地址:  
  • 被引频次:   14
  • DOI:   10.1016/j.saa.2021.120453 EA OCT 2021
  • 出版年:   2022

▎ 摘  要

Herein, we report the synthesis of a highly fluorescent nitrogen doped graphene quantum dots (N-GQDs) from waste precursors such as melamine sponge and arjuna bark via a microwave treatment and its functional and morphological characterization using various spectroscopy techniques such as optical, FTIR, XPS and TEM. The as-prepared aqueous N-GQD (dia. 2-3 nm) was used for the bio-imaging application using breast carcinoma cell line (MDA-MB-231) as a model, and the locations of all cells in the cytoplasm as well as nuclei were observed to stain brightly in blue fluorescent color successfully. In addition to that, the aqueous N-GQD showed fluorescence quenching behavior in the presence of hydrogen peroxide, which was exploited to sense H2O2, a probable toxin generated in the diseased cells. Importantly, the cell cytotoxicity was measured and found to be non-toxic (70% survival) to the MDA-MB-231 cells even at very high concentration (similar to 1.8 mg/ml) of the synthesized N-GQD. This study revealing excellent biocompatibility and imaging of the model cancer cells, and sensing of H2O2 by fluorescent quenching, indicates potential in-vivo cell culture applications of the prepared fluorescent N-GQD. (C) 2021 Elsevier B.V. All rights reserved.