• 文献标题:   Anti-biofilm activity and food packaging application of room temperature solution process based polyethylene glycol capped Ag-ZnO-graphene nanocomposite
  • 文献类型:   Article
  • 作  者:   NASKAR A, KHAN H, SARKAR R, KUMAR S, HALDER D, JANA S
  • 作者关键词:   solution synthesi, graphene based nanocomposite, nanoparticle, antibiofilm activity, food packaging application
  • 出版物名称:   MATERIALS SCIENCE ENGINEERING CMATERIALS FOR BIOLOGICAL APPLICATIONS
  • ISSN:   0928-4931 EI 1873-0191
  • 通讯作者地址:   Cent Glass Ceram Res Inst
  • 被引频次:   5
  • DOI:   10.1016/j.msec.2018.06.009
  • 出版年:   2018

▎ 摘  要

Present work reports on synthesis and anti-biofilm activity as well as food packaging application of Ag-ZnO-reduce graphene oxide (rGO)-polyethylene glycol (PEG) (AZGP) nanocomposites via adopting room temperature solution process by varying silver nitrate content (up to 0.1 M) with fixed content of graphene oxide and PEG used in the precursors. Presence of Ag and ZnO nanoparticles (NPs) distributed uniformly over rGO nanosheets has been confirmed by X-ray diffraction and transmission electron microscopic analyses whereas FTIR, Raman, UV-Visible and X-ray photoelectron spectral studies have been performed to confirm the existence of chemical interaction/complexation that happened between the available oxygen functionalities of rGO and PEG with the inorganic moieties (Ag-ZnO/Zn2+) of AZGP samples. A formation mechanism of AZGP nanocomposite is proposed based on the experimental results. Anti-biofilm activity has been studied on Staphylococcus aureus and Pseudomonas aeruginosa bacteria to confirm the efficiency of the nanocomposites for killing the bacterial cells. It is found that 0.05 M silver nitrate based AZGP nanocomposite at 31.25 mu g/mL sample dosage shows about 95% inhibition activity towards the biofilm formation as well as eradication of preformed biofilm. Also, agar based AZGP film has been fabricated and characterized by X-ray diffraction study for the purpose of food packaging application. Textural analysis of agar based film shows an enhanced film tensile strength. The film also shows an excellent antimicrobial activity even after keeping it for a prolong period of about 90 days. This cost effective simple synthesis strategy can make an avenue for development of Ag incorporated other biocompatible metal oxide based rGO-PEG nanocomposites for potential food packaging application.