▎ 摘 要
Graphene/Ag nanocomposites (GNS/AgNPs) were fabricated via a green and facile method, employing graphite oxide (GO) as a precursor of graphene, AgNO3 as a precursor of Ag nanoparticles, and sodium citrate as an environmentally friendly reducing and stabilizing agent. The synthesized GNS/AgNPs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Raman spectra (RS), respectively. The results indicated that graphite oxide was completely reduced to graphene, and the silver ion was reduced by sodium citrate simultaneously. Under a suitable dosage of silver ions, well-dispersed AgNPs on the graphene sheets mostly centralized at 20-25 nm. The surface plasmon resonance property of AgNPs on graphene showed that there was a interaction between AgNPs and graphene supports. In addition, antibacterial activity of silver nanoparticles was retained in the nanocomposites, suggesting that they can be potentially used as a graphene-based biomaterial. (C) 2012 Elsevier B. V. All rights reserved.