• 文献标题:   Electron Transfer Kinetics at Graphene Quantum Dot Assembly Electrodes
  • 文献类型:   Article
  • 作  者:   ZORIC MR, SINGH V, WARREN S, PLUNKETT S, KHATMULLIN R, CHAPLIN BP, GLUSAC KD
  • 作者关键词:   electron transfer, kinetic, interface, graphene quantum dot, cyclic voltammetry, electrode
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Univ Illinois
  • 被引频次:   1
  • DOI:   10.1021/acsami.9b14161
  • 出版年:   2019

▎ 摘  要

Electrochemical performance of nanostructured carbon electrodes was evaluated using cyclic voltammetry and a simple simulation model. The electrodes were prepared from soluble precursors by anodic electrodeposition of two sizes of graphene quantum dot assemblies (hexabenzocoronene (HBC) and carbon quantum dot (CQD)) onto a conductive support. Experimental and simulated voltammograms enabled the extraction of the following electrode parameters: conductivity of the electrodes (a combination of ionic and electronic contributions), density of available electrode states at different potentials, and tunneling rate constant (Marcus Gerischer model) for interfacial charge transfer to ferrocene/ferrocenium (Fc/Fc(+)) couple. The parameters indicate that HBC and CQD have significant density of electronic states at potentials more positive than -0.5 V versus Ag/Ag+ Enabled by these large densities, the electron transfer rates at the Fc/Fc(+) thermodynamic potential are several orders of magnitude slower than those commonly observed on other carbon electrodes. This study is expected to accelerate the discovery of improved synthetic carbon electrodes by providing fast screening methodology of their electrochemical behavior.