▎ 摘 要
Graphene and its derivatives can play a barrier strengthening role in waterborne epoxy resin (WEP) coatings. The main challenge for WEP coatings is not to maintain long-period corrosion resistance in the corrosive environments. Herein, this study reports a new strategy for providing mild steel with enhanced long-period corrosion resistance performance. Three of zinc oxide-reduced graphene oxide (ZnO-RGO) sheet hybrids were fabricated using the hydrothermal method, in the process of fabrication, varying the mass ratio between ZnO and GO as 1:3, 1:1, and 4:1, noted as Z3R, ZR, and 4ZR. The sheets can be stably dispersed into waterborne epoxy (WEP) coatings at a low weight fraction of 2%. The electrochemical impedance spectroscopy (EIS) test and salt spray test revealed that the anticorrosion performance was significantly improved by the addition of 4ZR into WEP coating. The anticorrosion mechanisms of the composite WEP coating were attributed to synergistic effect of chelating zinc oxide and the physical barrier protection of reduced graphene oxide. Graphical abstract Incorporation of hydrothermally synthesized ZnO-RGO nanocomposites into waterborne epoxy coating significantly enhanced the corrosion resistance of the coatings for metal protection.