• 文献标题:   Structural, Electronic, and Transport Properties of Hybrid SrTiO3-Graphene and Carbon Nanoribbon Interfaces
  • 文献类型:   Article
  • 作  者:   BARAN JD, EAMES C, TAKAHASHI K, MOLINARI M, ISLAM MS, PARKER SC
  • 作者关键词:  
  • 出版物名称:   CHEMISTRY OF MATERIALS
  • ISSN:   0897-4756 EI 1520-5002
  • 通讯作者地址:   Univ Bath
  • 被引频次:   4
  • DOI:   10.1021/acs.chemmater.7b02253
  • 出版年:   2017

▎ 摘  要

Hybrid materials composed of different functional structural units offer the possibility of tuning both the thermal and electronic properties of a material independently. Using quantum mechanical calculations, we investigate the change in the electronic and thermoelectric transport properties of graphene and hydrogen-terminated carbon nanoribbons (CNRs) when these are placed on the SrTiO3 (001) surface (STO). We predict that both p-type and n-type composite materials can be achieved by coupling graphene/CNR to different surface terminations of STO. We show that the electronic properties of graphene and CNR are significantly altered on SrO-terminated STO but are preserved upon interaction with TiO2-terminated STO and that CNRs possess distinct electronic states around the Fermi level because of their quasi-one-dimensional nature, leading to a calculated Seebeck coefficient much higher than that of a pristine graphene sheet. Moreover, our calculations reveal that in the Ti-02-SrTiO3/CNR system there is a favorable electronic level alignment between the CNR and STO, where the highest occupied molecular orbital of the CNR is positioned in the middle of the STO band gap, resembling n-type doping of the substrate. Our results offer design principles for guiding the engineering of future hybrid thermoelectric materials and, more generally, nanoelectronic materials comprising oxide and graphitic components.