▎ 摘 要
The epitaxial growth of graphene on silicon face (0001) of silicon carbide is simulated using the semiempirical methods of quantum chemistry. The experimental conditions for the epitaxial growth of graphene on SiC, at which the probability of seams and similar defects appearing is reduced to a minimum, are formulated. Possible ways of the emergence of reconstructions of the singular carbon and silicon SiC faces during the synthesis of graphenes are investigated as a test of the approach's efficiency. It is noted that simulation reproduces the reconstruction periods experimentally determined for both faces, and yields the most likely atomic arrangements in cases where the experimental formula of the superstructure allows different versions of such arrangements.