▎ 摘 要
The incorporation of graphene oxide (GO) into a polymeric drug carrier can not only enhance the loading efficiency but also reduce the initial burst and consequently improve the controllability of drug release. Firstly, 5-fluorouracil (5-Fu)-loaded hydroxypropyl cellulose/chitosan (HPC/CS@5-Fu) and GO/HPC/CS@5-Fu aerogels were successfully fabricated through chemical cross-linking with glutaraldehyde. Then, the obtained aerogels were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FITR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetry (TG), and the effect of HPC and GO content on the drug loading (DL) and encapsulation efficiency (EE) for the two aerogels were investigated, respectively. Finally, the drug release behavior of the GO/HPC/CS@5-Fu aerogels with different GO content was evaluated at two different pH values, and four kinds of kinetic models were used to evaluate the release behavior.