• 文献标题:   Bioinspired Polyelectrolyte-Assembled Graphene-Oxide-Coated C18 Composite Solid-Phase Microextraction Fibers for In Vivo Monitoring of Acidic Pharmaceuticals in Fish
  • 文献类型:   Article
  • 作  者:   QIU JL, CHEN GS, LIU SQ, ZHANG TL, WU JY, WANG FX, XU JQ, LIU Y, ZHU F, OUYANG GF
  • 作者关键词:  
  • 出版物名称:   ANALYTICAL CHEMISTRY
  • ISSN:   0003-2700 EI 1520-6882
  • 通讯作者地址:   Sun Yat Sen Univ
  • 被引频次:   23
  • DOI:   10.1021/acs.analchem.6b00417
  • 出版年:   2016

▎ 摘  要

A novel solid-phase microextraction (SPME) fiber was prepared by gluing poly(diallyldimethylammonium chloride) (PDDA) assembled graphene oxide (GO)-coated C18 composite particles (C18@GO@PDDA) onto a quartz fiber with polyaniline (PANI). The fiber surface coating was sequentially modified with bioinspired polynorepinephrine, which provided a smooth biointerface and makes the coating suitable for in vivo sampling. The novel custom-made coating was used to extract acidic pharmaceuticals, and high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) was employed for analysis. The custom-made coating exhibited a much higher extraction efficiency than the previously used commercial polydimethylsiloxane (PDMS) and polyacrylate (PA) coatings. The custom-made coating also possessed satisfactory stability (the relative standard deviations (RSDs) ranged from 1.60% to 10.3% for six sampling desorption cycles), interfiber reproducibility (the RSDs ranged from 2.61% to 11.5%), and resistance to matrix effects. The custom-made fibers were used to monitor the presence of acid pharmaceuticals in dorsal-epaxial muscle of living fish, and satisfactory sensitivities (limits of detection ranged from 0.13 ng/g to 7.56 ng/g) were achieved. The accuracies were verified by the comparison with liquid extraction. Moreover, the novel fibers were successfully used to monitor the presence of acidic pharmaceuticals in living fish, which demonstrated that the custom-made fibers were feasible for possible long-term in vivo continuous pharmaceutical monitoring.