• 文献标题:   Mechanical and Thermal Properties of Hierarchical Composites Enhanced by Pristine Graphene and Graphene Oxide Nanoinclusions
  • 文献类型:   Article
  • 作  者:   ZHANG B, ASMATULU R, SOLTANI SA, LE LN, KUMAR SSA
  • 作者关键词:   composite, graphene fullerene, mechanical propertie, nanotube, thermal propertie
  • 出版物名称:   JOURNAL OF APPLIED POLYMER SCIENCE
  • ISSN:   0021-8995 EI 1097-4628
  • 通讯作者地址:   Wichita State Univ
  • 被引频次:   25
  • DOI:   10.1002/app.40826
  • 出版年:   2014

▎ 摘  要

Epoxy resin nanocomposites incorporated with 0.5, 1, 2, and 4 wt % pristine graphene and modified graphene oxide (GO) nanoflakes were produced and used to fabricate carbon fiber-reinforced and glass fiber-reinforced composite panels via vacuum-assisted resin transfer molding process. Mechanical and thermal properties of the composite panels-called hierarchical graphene composites-were determined according to ASTM standards. It was observed that the studied properties were improved consistently by increasing the amount of nanoinclusions. Particularly, in the presence of 4 wt % GO in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 15% (21%), 34% (84%), and 40% (68%), respectively. Likewise, with inclusion of 4 wt % pristine graphene in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 11% (7%), 30% (77%), and 34% (58%), respectively. Also, thermal conductivity of the carbon fiber (glass fiber) composites with 4% GO inclusion was improved 52% (89%). Similarly, thermal conductivity of the carbon fiber (glass fiber) composites with 4% pristine graphene inclusion was improved 45% (80%). The reported results indicate that both pristine graphene and modified GO nanoflakes are excellent options to enhance the mechanical and thermal properties of fiber-reinforced polymeric composites and to make them viable replacement materials for metallic parts in different industries, such as wind energy, aerospace, marine, and automotive. (C) 2014 Wiley Periodicals, Inc.