• 文献标题:   Theoretical Study of Graphene Doping Mechanism by Iodine Molecules
  • 文献类型:   Article
  • 作  者:   TRISTANT D, PUECH P, GERBER IC
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF PHYSICAL CHEMISTRY C
  • ISSN:   1932-7447 EI 1932-7455
  • 通讯作者地址:   Univ Toulouse
  • 被引频次:   20
  • DOI:   10.1021/acs.jpcc.5b03246
  • 出版年:   2015

▎ 摘  要

The adsorption of iodine atoms and molecules on graphene is studied in detail, using first-principles calculations that include nonlocal correlation effects by means of van der Waals density functional approach. Structural, energetic, and electronic structure properties of these systems are repotted. We demonstrate that graphene surface Can be doped by atomic and molecular iodine. An upward shift of the Dirac point from the Fermi level with values of 045 and 0.08 eV is observed for adsorbed atoms and adsorbed I-2, respectively. It corresponds to graphene hole densities to be around 1.2 x 10(13)-3.9 x 10(11) cm(-2). We also show that the iodine molecule does, not dissociate in, contact with pure graphene monolayer. Calculation of the surface free energy reveals that the orientation of the adsorbed iodine molecules crucially depends on its concentration and the system temperature. The corresponding phase diagram indicates that the in-plan orientation of molecules is more stable When the iodine concentration decreases for temperatures above approximately 200 K; when beyond 500 K, iodine molecules are completely desorbed.