▎ 摘 要
Graphene-copper nanolayered composites have received research interest as promising packaging materials in developing next-generation electronic and optoelectronic devices. The weak van der Waal (vdW) contact between graphene and metal matrix significantly reduces the mechanical performance of such composites. The current study describes a new Cu-nanoporous graphene-Cu based bonding method with a low bonding temperature and good dependability. The deposition of copper atoms onto nanoporous graphene can help to generate nanoislands on the graphene surface, facilitating atomic diffusion bonding to bulk copper bonding surfaces at low temperatures, according to our extensive molecular dynamics (MD) simulations on the bonding process and pull-out verification using the canonical ensemble (NVT). Furthermore, the interfacial mechanical characteristics of graphene/Cu nanocomposites can be greatly improved by the resistance of nanostructure in nanoporous graphene. These findings are useful in designing advanced metallic surface bonding processes and graphene-based composites with tenable performance.