• 文献标题:   Designing Two-Dimensional Dirac Heterointerfaces of Few-Layer Graphene and Tetradymite-Type Sb2Te3 for Thermoelectric Applications
  • 文献类型:   Article
  • 作  者:   JANG W, LEE J, IN C, CHOI H, SOON A
  • 作者关键词:   thermoelectric, graphene, topological material, heterointerface, density functional theory, finitetemperature statistic, fermi dirac distribution
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Yonsei Univ
  • 被引频次:   4
  • DOI:   10.1021/acsami.7b09805
  • 出版年:   2017

▎ 摘  要

Despite the ubiquitous nature of the Peltier effect in low-dimensional thermoelectric devices, the influence of finite temperature on the electronic structure and transport in the Dirac heterointerfaces of the few-layer graphene and layered tetradymite, Sb2Te3 (which coincidently have excellent thermoelectric properties) are not well understood. In this work, using the first-principles density-functional theory calculations, we investigate the detailed atomic and electronic structure of these Dirac heterointerfaces of graphene and Sb2Te3 and further re-examine the effect of finite temperature on the electronic band structures using a phenomenological temperature-broadening model based on Fermi Dirac statistics. We then proceed to understand the underlying charge redistribution process in this Dirac heterointerfaces and through solving the Boltzmann transport equation, we present the theoretical evidence of electron hole asymmetry in its electrical conductivity as a consequence of this charge redistribution mechanism. We finally propose that the hexagonal-stacked Dirac heterointerfaces are useful as efficient p-n junction building blocks in the next-generation thermoelectric devices where the electron hole asymmetry promotes the thermoelectric transport by "hot" excited charge carriers.