▎ 摘 要
A novel graphene-on-organic film fabrication method that is compatible with a batch microfabrication process was developed and used for electromechanically driven microactuators. A very thin layer of graphene sheets was monolithically integrated and the unique material characteristics of graphene including negative thermal expansion and high electrical conductivity were exploited to produce a bimorph actuation. A large displacement with rapid response was observed while maintaining the low power consumption. This enabled the successful demonstration of transparent graphene-based organic microactuators.