▎ 摘 要
We report an observation of conductance fluctuations (CFs) in the bipolar regime of quantum hall (QH) plateaus in graphene (p-n-p/n-p-n) devices. The CFs in the bipolar regime are shown to decrease with increasing bias and temperature. At high temperature (above 7 K) the CFs vanishes completely and the flat quantized plateaus are recovered in the bipolar regime. The values of QH plateaus are in theoretical agreement based on full equilibration of chiral channels at the p-n junction. The amplitude of CFs for different filling factors follows a trend predicted by the random matrix theory. Although, there are mismatch in the values of CFs between the experiment and theory but at higher filling factors the experimental values become closer to the theoretical prediction. The suppression of CFs and its dependence has been understood in terms of time dependent disorders present at the p-n junctions.