▎ 摘 要
To fully exhibit the potentials of the fascinating characteristics of graphene oxide (GO) in polymer, the achievement of strong interface interactions and fine dispersion of GO in the hybrids is essential. In the present work, the elastomeric hybrids consisting of GO sheets are fabricated by utilizing butadiene-styrene-vinyl pyridine rubber (VPR) as the host through co-coagulation process and in situ formation of an ionic bonding interface. The VPR/GO composites with a normal hydrogen bonding interface are also prepared. The mechanical properties and gas permeability of these hybrids with an ionic bonding interface are obviously superior to those of the composites with a hydrogen bonding interface. With the ionic interfacial bonding, inclusion of 3.6 vol% of GO in VPR generates a 21-fold increase in glassy modulus, 7.5-fold increase in rubbery modulus, and 3.5-fold increase in tensile strength. The very fine dispersion of GO and the strong ionic interface in the hybrids are responsible for such unprecedented reinforcing efficiency of GO towards VPR. This work contributes new insights on the preparation of GO-based polymer hybrids with high performance.