• 文献标题:   Fabrication of high-performance nickel/graphene oxide composite coatings using ultrasonic-assisted electrodeposition
  • 文献类型:   Article
  • 作  者:   ZHANG HG, ZHANG N, FANG FZ
  • 作者关键词:   graphene oxide, ultrasound, composite coating, hardnes
  • 出版物名称:   ULTRASONICS SONOCHEMISTRY
  • ISSN:   1350-4177 EI 1873-2828
  • 通讯作者地址:   Univ Coll Dublin
  • 被引频次:   11
  • DOI:   10.1016/j.ultsonch.2019.104858
  • 出版年:   2020

▎ 摘  要

Ultrasonic-assisted electrodeposition was used to fabricate the nickel/graphene oxide composite coatings with high hardness, low friction coefficient, and high wear resistance. In the present study, the effects of ultrasonic power and concentration of graphene oxide on the mechanical and tribological properties of the electrodeposited nickel/graphene oxide composite coatings were systematically studied. X-ray diffraction (XRD) analyses showed that the crystallite size of the nickel decreased with an increase of ultrasonic power (0-50 W, 40 KHz, square wave) and concentration of graphene oxide (0.1-0.4 g/L). Morphologies of the surface and cross-section of the composite coatings observed by Scanning Electron Microscopy (SEM) confirmed the existence of graphene oxide particles in the nickel matrix. The results from microhardness measurement demonstrated that the hardness was increased by 1.8 times using 50 W ultrasonic-assisted electrodeposition with the fixed concentration of graphene oxide (0.1 g/L), compared to the pure nickel coating. The hardness was increased by 4.4 times for the 0.4 g/L graphene oxide with the optimized ultrasonic power of 50 W in comparison to the pure nickel coating. Meanwhile, the friction coefficient decreased gradually with an increase in ultrasonic power and concentration of graphene oxide, respectively, where the effect of the concentration of graphene oxide played a more important role.