• 文献标题:   A Microcolumn DC Graphene Sensor for Rapid, Sensitive, and Universal Chemical Vapor Detection
  • 文献类型:   Article
  • 作  者:   ZANG WZ, LIU Z, KULKARNI GS, ZHU HB, WU Y, LEE K, LI MWH, FAN XD, ZHONG ZH
  • 作者关键词:   chemical vapor sensing, graphene, direct current detection, fringing capacitive gating effect, binding energy
  • 出版物名称:   NANO LETTERS
  • ISSN:   1530-6984 EI 1530-6992
  • 通讯作者地址:  
  • 被引频次:   5
  • DOI:   10.1021/acs.nanolett.1c03416 EA DEC 2021
  • 出版年:   2021

▎ 摘  要

Nearly all existing direct current (DC) chemical vapor sensing methodologies are based on charge transfer between sensor and adsorbed molecules. However, the high binding energy at the charge-trapped sites, which is critical for high sensitivity, significantly slows sensors' responses and makes the detection of nonpolar molecules difficult. Herein, by exploiting the incomplete screening effect of graphene, we demonstrate a DC graphene electronic sensor for rapid (subsecond) and sensitive (ppb) detection of a broad range of vapor analytes, including polar, nonpolar, organic, and inorganic molecules. Molecular adsorption induced capacitance change in the graphene transistor is revealed to be the main sensing mechanism. A novel sensor design, which integrates a centimeter-scale graphene transistor and a microfabricated flow column, is pioneered to enhance the fringing capacitive gating effect. Our work provides an avenue for a broad spectrum real-time gas sensing technology and serves as an ideal testbed for probing molecular physisorption on graphene.