▎ 摘 要
In this study, polystyrene-grafted graphene oxide (GO-g-PS) nanocomposites with different PS chain lengths were prepared by in-situ polymerization, and their reinforcing effect on the PS matrix was investigated. The glass transition (T-g) and the thermal degradation (T-d) temperatures of the PS/GO-g-PS nanocomposites were increased up to 2.8 degrees C and 23.9 degrees C, respectively. The addition of only 0.1 wt% of the GO-g-PS to the PS/GO-g-PS nanocomposites increased the tensile strength and Young's modulus by around 20.5% and 71.4%, respectively. These results showed that the thermal and mechanical properties of the PS/GO-g-PS nanocomposites gradually improved with increasing length of the PS chain grafted onto the GO surface. These differences in reinforcing effects were attributed to differences in interfacial interaction between the graphene and PS matrix.