• 文献标题:   Degradation of sulfamethoxazole using PMS activated by cobalt sulfides encapsulated in nitrogen and sulfur co-doped graphene
  • 文献类型:   Article
  • 作  者:   WANG SZ, HU J, WANG JL
  • 作者关键词:   persulfate, cobalt sul fide, graphene, mechanism, antibiotic
  • 出版物名称:   SCIENCE OF THE TOTAL ENVIRONMENT
  • ISSN:   0048-9697 EI 1879-1026
  • 通讯作者地址:  
  • 被引频次:   18
  • DOI:   10.1016/j.scitotenv.2022.154379 EA MAR 2022
  • 出版年:   2022

▎ 摘  要

In this study cobalt sulfides (Co9S8) coated on the nitrogen and sulfur co-doped graphene (Co9S8@S-N-RG) was firstly prepared and used for degradation of antibiotic sulfamethoxazole (SMX). The results showed that SMX could be completely degraded by Co9S8@S-N-RG-activated peroxymonosulfate (PMS) within 20 min with its mineralization efficiency of 38.7%. The SMX degradation rate followed pseudo first-order kinetics with kinetic constant of 0.377 min(-1) that was higher than that induced by Co9S8, N-RG, S-N-RG and Co9S8@S-RG, indicating Co9S8@S-N-RG had superior catalytic activity. Co9S8@S-N-RG can activate PMS to produce sulfate radicals and hydroxyl radicals, while sulfate radicals played major role. Co9S8 participated in PMS activation in which Co2+ was involved in sulfate radicals formation, while sulfur species facilitated the conversion of Co3+ to Co2+. In addition, carbon defects, CO, pyridinic N and pyrrolic N also contributed to PMS activation.The superior catalytic activity was attributed to the synergistic effect of Co9S8 and S-N-RG. This study could provide an efficient and stable PMS activator, and insight into the PMS activation mechanism by Co9S8@S-N-RG.