• 文献标题:   Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields
  • 文献类型:   Article
  • 作  者:   BOOSHEHRI LG, MIELKE CH, RICKEL DG, CROOKER SA, ZHANG Q, REN L, HAROZ EH, RUSTAGI A, STANTON CJ, JIN Z, SUN Z, YAN Z, TOUR JM, KONO J
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   2469-9950 EI 2469-9969
  • 通讯作者地址:   Rice Univ
  • 被引频次:   44
  • DOI:   10.1103/PhysRevB.85.205407
  • 出版年:   2012

▎ 摘  要

Using ultrahigh magnetic fields up to 170 T and polarized midinfrared radiation with tunable wavelengths from 9.22 to 10.67 mu m, we studied cyclotron resonance in large-area graphene grown by chemical vapor deposition. Circular polarization dependent studies reveal strong p-type doping for as-grown graphene, and the dependence of the cyclotron resonance on radiation wavelength allows for a determination of the Fermi energy. Thermal annealing shifts the Fermi energy to near the Dirac point, resulting in the simultaneous appearance of hole and electron cyclotron resonance in the magnetic quantum limit, even though the sample is still p-type, due to graphene's linear dispersion and unique Landau level structure. These high-field studies therefore allow for a clear identification of cyclotron resonance features in large-area, low-mobility graphene samples.