• 文献标题:   Highly Efficient Cellular Acoustic Absorber of Graphene Ultrathin Drums
  • 文献类型:   Article
  • 作  者:   PANG K, LIU XT, PANG JT, SAMY A, XIE J, LIU YJ, PENG L, XU Z, GAO C
  • 作者关键词:   acoustic absorber, cellular material, graphene, ultrathin drum
  • 出版物名称:   ADVANCED MATERIALS
  • ISSN:   0935-9648 EI 1521-4095
  • 通讯作者地址:  
  • 被引频次:   13
  • DOI:   10.1002/adma.202103740 EA FEB 2022
  • 出版年:   2022

▎ 摘  要

Atomically thin 2D graphene sheets exhibit unparalleled in-plane stiffness and large out-of-plane elasticity, thereby providing strong mechanical resonance for nanomechanical devices. The exceptional resonance behavior of ultrathin graphene, which promises the fabrication of superior acoustic absorption materials, however, remains unfulfilled for the lack of applicable form and assembly methods. Here, a highly efficient acoustic absorber is presented, wherein cellular networks of ultrathin graphene membranes are constructed into polymer foams. The ultrathin graphene drums exhibit strong resonances and efficiently dissipate sound waves in a broad frequency range. A record specific noise reduction coefficient (51.3 at 30 mm) is achieved in the graphene-based acoustic absorber, fully realizing the superior resonance properties of graphene sheets. The scalable method facilely transforms commercial polymer foams to superior acoustic absorbers with a approximate to 320% enhancement in average absorption coefficient across wide frequencies from 200 to 6000 Hz. The graphene acoustic absorber offers a convenient method to exploit the extraordinary resonance properties of 2D sheets, opening extensive new applications in noise protection, building design, instruments and acoustic devices.