• 文献标题:   Defect-activated self-assembly of multilayered graphene paper: a mechanically robust architecture with high strength
  • 文献类型:   Article
  • 作  者:   XU LQ, WEI N, XU XM, FAN ZY, ZHENG YP
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS CHEMISTRY A
  • ISSN:   2050-7488
  • 通讯作者地址:   Fujian Normal Univ
  • 被引频次:   12
  • DOI:   10.1039/c2ta00176d
  • 出版年:   2013

▎ 摘  要

In this work molecular dynamics simulations are carried out to investigate the defect-mediated self-assembly of graphene paper from several layers of graphene sheets with vacancy defects. Tensile and shear deformations are applied to the obtained architectures to investigate both the in-plane and the out-of-plane mechanical properties. The effect of incipient defect coverage is analyzed and super-ductility is observed in the high defect density situation. While the stiffness and strength decrease with the increasing of incipient defect coverage under in-plane deformations, they increase under out-of-plane deformations, which can be attributed to the enhanced defect-induced interlayer cross-linking. Effects of crack-like flaws are also investigated to demonstrate the robustness of this structure. Our results demonstrate that defects, which are sometimes unavoidable and undesirable, can be engineered in a favorable way to provide a new approach for graphene-based self-assembly of vertically aligned architectures with mechanical robustness and high strength.