• 文献标题:   Supramolecular-driven fabrication of porous nitrogen/sulfur co-doped graphene toward high-performance supercapacitor
  • 文献类型:   Article
  • 作  者:   CHENG HH, LI B, MENG T, LIU C, SHU D
  • 作者关键词:   heteroatoms doping, lcysteine, n, sdoped graphene, supercapacitor, supramolecular assembly
  • 出版物名称:   INTERNATIONAL JOURNAL OF ENERGY RESEARCH
  • ISSN:   0363-907X EI 1099-114X
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1002/er.8477 EA AUG 2022
  • 出版年:   2022

▎ 摘  要

Practical applications of graphene-based materials are still inhibited by the serious restacking of graphene nanosheets and single electrical double-layer capacitor energy storage mechanism. To address these issues, nitrogen/sulfur-co-doped reduced graphene oxide (N/S-rGO) was ingeniously prepared by supermolecular-driven in-situ co-dope method. In this article, the GO/L-cysteine supermolecular system was assembled first, the hydrogen bond between L-cysteine and GO is confirmed by the Fourier-transform infrared spectroscopy (FTIR). The theoretical calculation result indicating that L-cysteine is uniformly assembled on GO surface by supermolecular interaction force (dispersion force and hydrogen bond). Due to the oriented supermolecular force, the thus-fabricated N/S-rGO affords customized three-dimensional (3D) porous structure, uniform N,S co-doping, effective electrolyte ion-transport pathways, and satisfactory structural stability. Attributing to the inherent plentiful 3D cavity structure and synergistic effect between N, S heteroatoms, N/S-rGO shows outstanding electrochemical performance, the best-performed N/S-rGO2 possess delightful capacitance (416 F g(-1)), after 20 000 cycles the capacitance retention of N/S-rGO is 110% of the initial value, shows excellent cycle reliability. The N,S-rGO all-solid flexible symmetrical supercapacitor can light up luminous diode for 30 seconds when fully charged, indicating that it provides the possibility of practical application.