▎ 摘 要
We study the effect of strain on band structure and valley-dependent transport properties of graphene heterojunctions. It is found that valley-dependent separation of electrons can be achieved by utilizing strain and on-site energies. In the presence of strain, the values of transmission can be effectively adjusted by changing the strengths of the strain, while the transport angle basically keeps unchanged. When an extra on-site energy is simultaneously applied to the central scattering region, not only are the electrons of valleys K and K ' separated into two distinct transmission lobes in opposite transverse directions, but the transport angles of two valleys can be significantly changed. Therefore, one can realize an effective modulation of valley-dependent transport by changing the strength and stretch angle of the strain and on-site energies, which can be exploited for graphene-based valleytronics devices.