▎ 摘 要
This paper describes the preparation and electrocatalytic activity of nanocomposites composed of reduced graphene oxide and Au-25 clusters. Well-defined nanocomposites are prepared by coating the surface of reduced graphene oxide with multiple layers of Au-25 film, the thickness of which can be precisely controlled according to the preparation conditions. The electrocatalytic activity of the nanocomposites are examined for the reduction of [Ru(NH3)(6)](3+) and in the oxygen reduction reaction by chronoamperometry and electrochemical impedance spectroscopy as a function of Au-25 thickness. Whereas the catalytic rate constants obtained for the reduction of [Ru(NH3)(6)](3+) are found to be rather constant with varying Au-25 thickness, those for the oxygen reduction reaction increased drastically with an increasing number of Au-25 layers. This increase can be ascribed to the porous structures generated in the nanocomposites. The porous channels generated in the nanocomposites offer confined space surrounded by electrified surface, greatly enhancing the electrocatalytic activity for the oxygen reduction reaction. Additional rotating disk electrode and rotating ring-disk electrode voltammetry show that the nanocomposites support an efficient four-electron reduction of oxygen.