• 文献标题:   Highly porous magnetite/graphene nanocomposites for a solid-state electrochemiluminescence sensor on paper-based chips
  • 文献类型:   Article
  • 作  者:   XU YH, LV ZZ, XIA Y, HAN YC, LOU BH, WANG EK
  • 作者关键词:   magnetite nanocomposite, graphene, electrochemiluminescence, immobilization, paperbased chip
  • 出版物名称:   ANALYTICAL BIOANALYTICAL CHEMISTRY
  • ISSN:   1618-2642 EI 1618-2650
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   22
  • DOI:   10.1007/s00216-012-6510-9
  • 出版年:   2013

▎ 摘  要

Graphene-nanosheet-based highly porous magnetite nanocomposites (GN-HPMNs) have been prepared using a simple solvothermal method and used as an immobilization matrix for the fabrication of a solid-state electrochemiluminescence (ECL) sensor on paper-based chips. Highly porous Fe3O4 nanocrystal clusters were coated with acrylate and wrapped tightly on the skeleton of graphene nanosheets. The structures and sizes of the GN-HPMNs could be tuned by varying the proportions of the solvents ethylene glycol and diethylene glycol. Then, the relatively highly porous ones with an average diameter of about 65 nm were combined with Nafion to form composite films on an electrode surface for immobilization of Ru(bpy)(3)(2+) (bpy is 2,2'-bipyridine). Because of their porosity, negatively charged surface, and cooperative characteristics of magnetic nanomaterials and graphene, under an external magnetic field, the GN-HPMNs ensured effective immobilization, excellent electron transfer, and long-term stability of Ru(bpy)(3)(2+) in the composite film. The sensor developed exhibited excellent reproducibility with a relative standard deviation of 0.65 % for 30 continuous cycles. It was found to be much more favorable for detecting compounds containing tertiary amino groups and DNAs with guanine and adenine. A detection limit (signal-to-noise ratio of 3) of 5.0 nM was obtained for tripropylamine. As an application example, 0.5 nM single-nucleotide mismatch could be detected. This was the first attempt to introduce magnetic nanomaterials and an external magnetic field into paper-based chips. The sensor developed has the advantages of high sensitivity, good stability, and wide potential applicability as well as simplicity, low cost, and good disposability.