▎ 摘 要
We study the impact of plasmon-phonon hybridization on the stopping and image forces acting on a charged particle moving parallel to a graphene-Al2O3-graphene sandwichlike composite system by considering a broad domain in the parameter space. The effective dielectric function of the system is obtained using two descriptions of the electronic response of doped graphene: an ab initio method based on the time-dependent density functional theory calculations and an analytical expression based on the massless Dirac fermion (MDF) approximation for graphene n bands. It is found that the main discrepancies between the two methods come from the high-energy interband electron transitions, which are included in the ab initio method but not in the MDF method. Special attention is paid to the regime of low-particle speeds, where the MDF method compares well with the ab initio method, but the modeling is sensitive to the effects of finite temperature and the treatment of phenomenological damping. It is observed at low particle speeds that both forces exhibit an interesting interplay between the hybrid modes of the phononic type and the continuum of the intraband electron-hole excitations in graphene. Furthermore, the effects of the lowest-energy antisymmetric modes, which exhibit acoustic dispersions at long wavelengths in a system with equally doped graphene layers, are exposed in calculations of the stopping force on a co-moving pair of incident particles with opposite charges that are symmetrically positioned around the target system.