▎ 摘 要
Binder-free combination of reduced graphene oxide with Cu foam (RGO/Cu foam) anode for lithium ion battery was designed and achieved via one-step facile electro-reduction. The as-prepared composite RGO/Cu foam anode were studied in terms of scanning electron microscope (SEM), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR), Raman, galvanostatic charge/discharge, cyclic voltammogram and AC impedance. As expected, graphene oxide nanosheets were indeed successfully electro-reduced to large degree and tightly combined with Cu foam without any additional polymer binder. Moreover, the integrated RGO/Cu foam electrode delivered high reversible capacity of 1196.2 mAh/g at 0.25 A/g, indicating satisfactory electrochemical performances. High Li-storage activity, large surface area, high conductivity of RGO nanosheets and the binder-free combination with porous Cu foam should be jointly responsible for high electrochemical performances.